This smart bandage can help diagnose and treat your injuries

If you were to compare the medicine of ancient Greece with healthcare today, you could name plenty of differences: vaccinations, empirically-tested medicines, and we don’t think that an imbalance of humours is the root of most illnesses. But look closer, and you’ll see that some things haven’t changed despite all the centuries that separate us.

Bandages, for example. If you found yourself on the receiving end of a Spartan soldier’s spear in ancient Greece, you’d have a strip of cloth wrapped around your wound. Find yourself with a chronic wound today and, chances are, you’ll get very similar treatment. The principle of the bandage — a barrier that stops dust, dirt and other environmental nasties from getting into a wound — has remained the same for somewhere over 2,500 years.

Finally, however, the bandage is getting its own high-tech makeover.

Researchers at Massachusetts’ Tufts University have been working on a prototype smart bandage that can not only keep track of how well a wound is healing, but also deliver drugs directly into the site of the injury only when they’re needed.

The bandage is the culmination of over six years’ work between Tufts and other higher education institutions to create a bandage that includes sensors to monitor a number of markers showing that show how well, or otherwise, a wound is healing, alongside a drug delivery mechanism – all in a form factor that’s flexible enough to be wrapped around a wound.

“Chronic wounds are a very biologically complex system, and you have to have the bandage interface in very close contact with the wound so you can monitor whether the wound is healing. At the same time, we wanted to find out if there was a way to intervene at the right time to accelerate wound healing,” Sameer Sonkusale, professor of electrical and computer engineering at Tufts University’s School of Engineering, told ZDNet.

The bandage is a combination of a cloth layer and an electronics layer. The electronics layer includes sensors that track the pH and temperature of the wound — a higher than normal pH or temperature indicates it’s not healing well. Oxygenation sensors could also be used within the bandage — oxygenation levels can be used to track a wound through its various stages of healing, with lower levels suggesting impaired recovery.

The Tufts engineers have designed the bandage to be a closed loop. Once it detects slow wound healing or signs of inflammation or infection, it can drop drugs into the wound by means of a thermoresponsive system: a microprocessor within the bandage monitors pH and temperature levels and, if they go too high, a drug-carrying gel within the bandage is heated up. The warmed-up particles containing the drug shrink, releasing their medication into the wound.

“I like to call it precision diagnostics — you’re not providing the same drug treatment regimen to every person, because every person is different and their wound healing may respond differently to different drugs. It’s important we monitor how the wound is healing and only then deliver drugs on demand,”

Monitoring of the wound doesn’t just stay within the bandage — data can potentially be sent out to a phone, either to keep the patient or doctor informed, or to a clinical application, where aggregated data could be used for research purposes to help refine treatment algorithms. “There is definitely value in gathering the data from all kinds of wounds and hopefully that will improve chronic wound treatment in the future. There’s definitely the potential for that when we have all types of wound fitted up with these kinds of smart bandages,” Sonkusale said.

The bandage is 3mm thick, and as its electronics components are almost all flexible, enabling it to be wrapped around the site of injury just as a normal cloth bandage would.

The bandage “required a bit of engineering from the ground up, because most of the time, sensors or drug delivery systems are in some way tied to a hard substrate, like a capsule or a syringe, or a silicon or glass substrate… When we designed these platforms we were mindful of the fact that anything that is in contact with the wound should be really flexible and biocompatible with the wound,” Sonkusale said. The microprocessor, which is not yet flexible, sits to one side of the wound so as not to disturb it. However, once a flexible version of the microprocessor has been developed, it can be more fully incorporated into the bandage.

Modern technology is becoming so scientific that we will need some very smart techs to maintain and configure the electronics. To all our young readers the future is here and you must keep up with these innovations.

The Money Connection Team

Leave a comment

Your email address will not be published. Required fields are marked *